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Abstract

This study presents a two-stage deep learning framework
for classifying bridge structures according to the Hazus
Earthquake Loss Estimation methodology using Google
Street View imagery. The goal is to develop a image-based
approach to infrastructure inventorying.

The first stage filters input images to retain those that
clearly depict side views of bridges, which are essential
for identifying structural characteristics. Several filtering
strategies were tested, including K-means clustering on fea-
tures extracted from pretrained ResNet models and direct
scene classification using PlacesCNN. The most effective
method combined ResNetI8 pretrained on Places365 with
K-means clustering.

The second stage classifies filtered images into one of
eight Hazus structural types using a ResNet-50 model fine-
tuned with class-weighted cross-entropy loss. Multiple op-
timizers and pretrained backbones were evaluated, with the
best results achieved using filtered images and Places365
pretraining. Evaluation metrics included accuracy, macro-
average F1, and weighted-average F1.

Results show that image filtering improves classifica-
tion performance, especially on less frequent classes. Fur-
ther analysis revealed that most classification errors oc-
curred between classes that differed only by construction
era. Grouping such classes led to substantial performance
gains, suggesting that while structural information can
be learned from imagery, age-based distinctions remain
a challenge. The framework offers a step toward semi-
automated bridge inventory generation for seismic risk as-
sessments.

1. Introduction

An accurate assessment of regional bridge inventories is
fundamental for transportation planning, seismic retrofit de-
sign, and post-earthquake recovery. Existing seismic loss
estimation tools, such as the FEMA Hazus earthquake loss
estimation method, rely on detailed infrastructure databases

such as the US National Bridge Inventory (NBI) to assign
fragility classes to bridges [6] [L7]. The Hazus methodol-
ogy classifies bridges mainly on material, design, and age.
However, many regions around the world lack comprehen-
sive inventories, limiting the applicability of fragility-based
seismic risk assessments.

This study proposes an image-based classification sys-
tem to assign Hazus structural classes using Google Street
View imagery. By leveraging only geospatial coordinates,
this approach enables the semi-automated creation of bridge
inventories without requiring labor intensive, manual classi-
fication by engineers. For training and validation, bridge co-
ordinates and corresponding structural classes are obtained
from the NBI, and associated street-level images are re-
trieved using the Google Street View APIL. The system in-
put includes street-level images taken from multiple angles.
The output is the structural classification according to the
Hazus methodology.

The classification task is performed using a two-stage
deep learning framework that uses convolutional neural net-
works (CNN) with transfer learning. The first stage filters
images to retain those with informative side views of the
bridge, while the second classifies the filtered images into
Hazus-defined bridge categories. The system thus converts
raw street-level imagery into structural classification data
that could be used for seismic risk modeling.

The baseline approach for this task involves direct clas-
sification of all retrieved images without a filtering stage. In
contrast, the proposed two-stage method aims to both im-
prove classification performance by focusing on the most
informative images and increase efficiency by reducing the
number of images that need to be processed by the more
computationally intensive CNN classifier.

2. Related Work

Recent advancements in computer vision have enabled
scalable infrastructure classification using street-level im-
agery, especially for buildings. Ogawa et al. [15] proposed
a framework that combines street view imagery and GIS
building footprint data to estimate building age and struc-



tural type, using state of the art DCNN and Vision Trans-
form (ViT) architectures. Similarly, Kang et al. [[13] trained
CNN:s to classify the functionality of individual building us-
ing facade images across North American cities. Similar
to our work they performed outlier removal on their street
view imagery using a pretrained CNN. An example that also
uses California as their testbed, Iannelli and Dell’ Acqua
[11] used CNNs to estimate building floor counts from
street imagery in California, bypassing traditional metrics
like building height. These studies demonstrate the poten-
tial of using street-level imagery and modern deep learn-
ing techniques for large-scale, cost-effective classification
in the built environment.

However, these efforts are largely focused on buildings,
and street-level image-based classification of bridges re-
mains underexplored. In contrast, most computer vision
applications for bridges have focused on damage detection.
For example, Deng et al. [4] introduced a pixel-level bridge
damage detection model using an ASPP-based deep learn-
ing network tailored for identifying deterioration features
like delamination and rebar exposure. Their work highlights
the difficulty of collecting labeled datasets for damage de-
tection and addresses class imbalance using a weighted In-
tersection over Union (IoU) loss function. Another example
is Alfaro et al. [1]], where an approach to identify cracks
using a 3D model generated from photographs of an un-
manned aerial vehicle (UAV) and the use of a convolutional
neural network (CNN) was proposed. While effective for
monitoring bridge condition, this line of research does not
address structural classification or inventory generation.

This paper aims to fill that gap by applying a deep
learning framework to classify bridge structural types us-
ing street-level imagery. Unlike prior work that focuses on
infrastructure damage or is limited to buildings, our method
targets the classification of bridge typologies from images,
which supports broader risk modeling and infrastructure
planning efforts.

2.1. Manual and Semi-Automated Inventory Ap-
proaches

Historically, infrastructure inventories rely heavily on
manual input. Rozelle [16] adapted Hazus for global use
by taking advantage of Humanitarian OpenStreetMap, a
dynamic, crowdsourced geographic database. In the ab-
sence of labeled bridge images, some works have explored
bridge prototyping using metadata. Cetiner [2] developed a
semi-automated approach by fusing semantic and geomet-
ric information with relevant NBI data to generate structural
models of bridges. This method, while powerful, still re-
quires structural inputs not always available in developing
regions. This proposed method builds on this idea by us-
ing transfer learning to extract structural information from
images and use it for classification rather than modeling.

2.2. Remote Sensing and Multi-Source Imaging for
Exposure Mapping

Several studies have explored scalable exposure map-
ping through satellite or aerial imagery. Wieland et al.
[19] proposed a framework that integrates omnidirectional
ground images and satellite remote sensing to rapidly es-
timate building typologies using SVM-based classification.
While powerful, these methods often lack the the detail of-
fered by street-level views and are rarely applied to bridges.

2.3. Machine Learning on NBI Data

The National Bridge Inventory (NBI) has been used as a
dataset for several machine learning applications. Jooto and
Lattanzi [12] combined NBI records with seismic intensity
and cost data to predict potential bridge designs using deci-
sion trees, Bayesian networks, and SVMs Fiorillo and Nas-
sif [7]] applied five different supervised learning techniques
(including random forests, neural networks, and gradient
boosting) to estimate bridge element conditions. These ap-
proaches rely on structured tabular data rather than imagery.
Cetiner [2] is a notable exception, integrating imagery with
NBI-derived metadata to build detailed 3D bridge models.
However, their work focuses on structural modeling, which
is more complex than the classification approach needed for
regional seismic assessments.

3. Dataset

The dataset used in this project was obtained using the
coordinates given by NBI and the bridge’s respective Hazus
class. The following sections describe the data collection
process and the first stage of classification, data filtering.

3.1. Data Collection

The dataset used in this project was obtained using the
coordinates given by NBI and the bridge’s respective Hazus
class. The first step in data collection was deciding which
bridges were going to be part of the classification study. For
this project, data was filtered to California bridges and those
above roads. California bridges were chosen due to having
a different seismic design to the rest of United States [6].
Only bridges above roads were chosen due these bridges
being the only ones where it’s possible to obtain imagery of
the side profile, which contains the structural characteristics
needed to classify the bridges.

The next step was deciding which Hazus classes were
going to be included in the study. There are 23 Califor-
nia bridge classes in the Hazus methodology, which mainly
differentiate bridges based on material, structural, and age.
However, once bridges are filtered to over highways this
number drops to 21 bridge classes. After analyzing the ob-
servances of each of the 21 bridge classes, it was decided to
only focus on bridge classes that had more than 250 occur-



rences, to make sure that each class had enough data to have
proper training, validation, and test samples. This lowered
the total number of classes to 8. As can be seen in Figure[T}
the data is unbalanced, with the number of samples going
from 250 to more than 2000. To address this class imbal-
ance, a weighted cross-entropy loss function was employed
in the classification step. Accuracy metrics that take into
account the unbalanced nature of the dataset were also used
to address this issue [18].
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Figure 1: Distribution of Hazus classes in the unfiltered
training dataset

To address the limitation of having only a single coor-
dinate per bridge, four images are captured from different
angles (North, East, South, and West) at each location to
provide a more comprehensive visual representation of the
bridge’s structure and surroundings. Two examples of this
can be seen in Figure 2] This capturing technique led to
25,469 images before data filtering.

Bridge ID: 61843 -HWB8

Figure 2: Street View Images of Bridges 61843 and 61901
taken from North, East , South, and West

3.2. Data Filtering Methodology

To determine which Street View images best captured
the side profile of each bridge, four classification methods
were tested. These methods served to filter out images that
did not contain sufficient structural information and helped

select the most informative views for the dataset without
the need for labeling. Although most of the images were
not labeled, 590 images were hand labeled to aid with val-
idation. This corresponds to approximately two percent of
the dataset. Three of the filtering approaches take advan-
tage of the ResNet framework [8]], which will be described
in more detail in the Hazus Classification Method.

Approach 1: Baseline ResNet18 Trained on ImageNet

A standard ResNet18 model pretrained on ImageNet served
as the baseline [3]. While this model was not specifically
trained on structural or infrastructure-related classes, it pro-
vided a baseline for identifying images likely to include
large man-made structures. The model was used to extract
features that were then run through a K-means clustering
algorithm to decide if the image contains a bridge side view
image or not.

K-means clustering aims to partition a set of n
data points {z1,22,...,2x,} into K distinct clusters
{C4,C4,...,Ck} such that the within-cluster variance is
minimized. Formally, the optimization problem is:

K
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where ju, is the centroid of cluster C; and || - || denotes
the Euclidean norm. The algorithm iteratively alternates be-
tween assigning points to the nearest centroid and updating
each centroid as the mean of the assigned points, until con-
vergence [10].

Approach 2: ResNet18 Trained on Places365

The second approach takes advantage of the Places365
dataset that is specifically designed for scene recognition
and includes bridges as one of its classes [20]. By using
a model trained on the Places365 dataset, the feature ex-
tracted should be more meaningful. Like the baseline ap-
proach the pre-trained ResNet18 model is used to extract
features and K-means clustering is used to decide which im-
ages contain side profile.The training and testing code used
throughout this paper were based on the scripts created as
part of the Places365 projectﬂ

Approach 3: ResNet50 Trained on Places365

The third approach follows the same workflow as the sec-
ond approach, but takes advantage of ResNet50, a larger
model that could potential predict side-views with higher
accuracy. This higher accuracy however would come with
higher computational cost.

Ihttps://github.com/CSAILVision/places365/blob/
master/run_placesCNN_basic.py
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Approach 4: Direct Scene Classification with

PlacesCNN

The fourth approach uses the wideresnet18 model trained
on the Places365 dataset to directly classify scene types.
This method allowed for precise identification of scene cate-
gories such as “bridge” or “viaduct.” Only images with high
confidence in bridge-related categories were retained. This
approach is like that used by Kang et al. to manage the
uncontrolled quality of street images for building classifi-
cation [13[]. This method has as an advantage that it is a
direct and interpretable way of dividing data that does not
use clustering.

3.3. Data Filtering Results

Four approaches were used for data filtering in this
study to identify side-view bridge images. Three of the
approaches used K-means clustering, while the fourth ap-
proach used direct scene classification. To compare the effi-
cacy of the four approaches, 590 images were hand labeled.
To assure that these would be as representative as possible
of the entire dataset, Hazus class, image direction, and lo-
cation of the bridge were taken into account when choosing
the bridges to hand label.

Accuracy was chosen as the primary evaluation metric,
as the classification task is approximately balanced. In this
dataset, each bridge typically includes images from four di-
rections (North, South, East, West), and—assuming no ma-
jor occlusions—either the North—South or East—West direc-
tions are expected to contain side views. As a result, about
50% of the images should be labeled as side views. Accu-
racy can be defined as the ratio of correctly predicted labels
to the total number of images in the test set:

A TP + TN @)
ccuracy =
o Total Number of Samples

As shown in Table [I] the K-means classifiers outper-
form the direct scene classification approach by at least 8%.
Among the K-means methods, those using Places365 fea-
tures perform better than the method using ImageNet fea-
tures. The ResNetl8 and ResNet50 variants yield similar
accuracy, though ResNet50 incurs a higher computational
cost. For this reason, the ResNet18 (Places365) configura-
tion was selected for downstream use.

Table 1: Accuracy comparison of side-view filtering
methods

Method Accuracy (%)
(1) Baseline ResNet18 (ImageNet) 79
(2) ResNet18 (Places365) 84
(3) ResNet50 (Places365) 83
(4) Direct Scene Classification 71

To further evaluate classification performance, confusion
matrices are shown in[3]. The confusion matrix helps iden-
tify the distribution of different types of errors:

* True Positive (TP): Correctly identified side view
* True Negative (TN): Correctly identified non-side view
¢ False Positive (FP): Missed non-side view

 False Negative (FN): Missed side view

In the context of this study, false negatives are more
problematic than false positives, as they reduce the num-
ber of valid samples for the next classification step. Max-
imizing true positives is also important, as it increases the
pool of useful data. Based on both metrics, the classifier
using Places365 with ResNetl18 demonstrates the best per-
formance and was selected for the Hazus classification task.

Confusion Matrix - K-means ImageNet (ResNet18) Confusion Matrix- Direct Scene Classification
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Figure 3: Confusion Matrices for the four data filtering
techniques

A t-SNE plot of the selected filtering method can be
seen in Figure[d A t-SNE plot is a way to visualize high-
dimensional data into 2D space, while preserving the local
structure of the data. The plot shows that the chosen method
has effectively group images into semantically meaningful
clusters in the feature space.



t-SNE of K-means Places365 using ResNet18 Features
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Figure 4: t-SNE of K-means Places365 using ResNet18 fea-
tures

Figure [3] shows the distribution of Hazus classes after
filtering. Although filtering dropped the number of sam-
ples for both “HWB13” and “HWB9” to below 250, these
classes were kept for further classification.
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Figure 5: Confusion Matrices for the four data filtering
techniques

4. Hazus Classification Methodology

The goal of this classification task is to assign a Hazus
structural class to each bridge based on images taken from
Google Street View. This is treated as an 8-way image clas-
sification problem, where each input is an image (ideally a
side view) of a bridge, and the output is one of the eight
Hazus-defined structural classes. For the purpose of this
study, the dataset was dividing into three parts: 70% for
training, 15% for validation, and 15% for testing.

4.1. ResNet-50 Architecture

A ResNet-50 convolutional neural network is used as
the backbone for the classifier. ResNet50 is a deep con-
volutional neural network (CNN) architecture that is a vari-
ant of the popular ResNet architecture. The architecture of
ResNet50 is divided into four sections: the convolutional
layers, the identity block, the convolutional block, and the
fully connected layers. The convolutional layers are used

to extract features from the input image, while the identity
and convolutional block are used to process and transform
the features. As the last part of the network, the fully con-
nected layer is used to make the final classification. Figure
[6]gives an overview of the ResNet50 Architecture
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Figure 6: ResNet-50 Architecture

https://commons.wikimedia.orqg/wiki/File:ResNet50.png

In the context of this project, a pretrained ResNet-50
with weights from either ImageNet and Places365 were
used. The original fully connected classification head was
replaced with a new linear layer that outputs logits for the 8
Hazus classes. Only the final ResNet block and the new
classification layer were unfrozen and fine-tuned during
training.

The training and testing of the ResNet model were built
on top of the Places365 demo and training codebase [20].
However, changes were required to accommodate the prob-
lem structure. In particular, the validation and test logic
had to be changed to handle multiple images per bridge and
evaluate performance at the bridge level. This change was
not done in the training stage, to increase the number of
instances that the model could learn from. This change al-
lowed for a more realistic testing scenario, where predic-
tions would most likely be made for a bridge using multiple
viewpoints.

4.2. Loss Function

To account for the class imbalance in the data cross-
entropy loss with class weighting was used:

N elui
L= —w, log <> (3)
; ! >, el

where f; is the j-th element of the vector of class score f,
fy, is the score for true class y;, and w,, is the class weight
to address imbalance. In this case the weights were set to
be inversely proportional to the frequency of each class in
the filtered training set.

4.3. Optimization

Three different optimizer were compared in this study:
Adam [14], AdamW [3]], and RMSprop [9]. As shown in
Figure [} RMSprop achieved the highest training and val-
idation accuracy after three epochs and was selected as the
final optimizer. RMSprop updates parameters through an
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Figure 7: Effect of optimizer in training and validation ac-
curacy

adaptive learning rate that is based on the magnitude of re-
cent gradients. It uses a moving average of squared gra-
dients to normalize updates, which helps stabilize training.
Weight decay was also tested but did not yield significant
improvements and was therefore excluded.

4.4. Data Augmentation

To improve generalization and reflect realistic varia-
tions in street-level imagery, a series of data augmentation
techniques were used during training through the torchvi-
sion.transforms module. These transformation were chosen
reflect realistic variations that could occur when capturing a
bridge image from different lighting conditions, distances,
or angles. The augmentations included in this study were:

* RandomResizedCrop: Crops random portion of image

¢ RandomHorizontalFlip: Horizontally flips images

¢ ColorJitter: Randomly adjusts brightness, contrast, satura-
tion, and hue

4.5. Bridge-Level Prediction Aggregation

While training was conducted at the image level, eval-
uation during validation and testing was performed at the

bridge level. Each bridge typically had multiple images
from different angles. To generate a single predicted class
for a bridge, the mean of the softmax outputs of all the asso-
ciated images was taken and then the class with the highest
average probability was selected. This method proved to
be the most consistent among other tested, such as majority
voting and choosing the highest probability over all classes
and images.

5. Hazus Classification Results

The results of the Hazus bridge classification models are
presented in three parts: (1) training and validation perfor-
mance across model configurations, (2) test set performance
broken down by individual Hazus classes, and (3) test set
performance based on grouped structural classes where age
is not used as a distinguishing feature.

5.1. Training and Validation Performance

The three Hazus Classification models tested in this
study were: the baseline using pretrained weights from Im-
agenet and no filtering of images, filtered image dataset us-
ing pretrained weights from Imagenet, and filtered image
dataset using pretrained weights from Places. Each model
was trained for 60 epochs. The training and validation ac-
curacy at each epoch can be seen in figure
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Figure 8: Learning Curves for Training and Validation

All three models achieved similar maximum validation
accuracies of approximately 60%. The baseline model
showed lower training accuracy compared to the filtered
models, likely due to the inclusion of non-informative im-
ages that obscure key structural features. Both filtered mod-
els (ImageNet and Places365 pretrained) had comparable
training performance, suggesting that filtering alone signif-
icantly improves the quality of the training data. However,



the noticeable gap between training and validation accuracy
in all cases suggests that the models are overfitting to the
training set. Additional regularization strategies or larger
datasets may be needed to close this gap and improve gen-
eralization.

5.2. Test Performance by Individual Hazus Class

Model performance on the test set is evaluated using
three metrics: overall accuracy, macro-average Fl-score,
and weighted-average Fl-score. While accuracy is com-
monly used, it can be misleading in the presence of class
imbalance, as it may be disproportionately influenced by
the performance of the most frequent classes.

To better assess the model’s performance across all
Hazus classes, the macro-average and weighted average F1-
score are reported. F1 score can be defined as:

Fl-score — 2 - Precjis.ion - Recall @
Precision + Recall

Where
¢ Precision = TPTfFP
A Recall = TP’E—iPFN

The macro-average F1 treats all classes equally by aver-
aging the Fl-scores of each class, regardless of how many
samples each class has. In contrast, the weighted-average
F1 weights each class’s F1-score by the number of true in-
stances, providing a more representative picture of overall
performance on the imbalanced dataset.

Table 2] summarizes the test performance of three model
configurations: the baseline model trained on all images (no
filtering), and two filtered models pretrained on ImageNet
and Places365 respectively. Although the baseline model
achieves the highest accuracy (0.603), it underperforms in
macro and weighted F1-scores, suggesting it is biased to-
ward majority classes. In contrast, the filtered model us-
ing Places365 features achieves the highest macro-average
F1 (0.535), indicating more balanced performance across
all Hazus structural types.However, the Baseline does have
higher performance metrics than the model trained on fil-
tered images and ImageNet, which can indicate that Ima-
geNet does not work as well in this context.

Table 2: Test set performance metrics across different
model configurations

Metric Baseline | ImageNet | Places365
Accuracy (%) 60.3 57.7 60.2
Macro F1 (%) 514 49.2 53.5
Weighted F1 (%) 58.9 56.3 59.3

The confusion matrices of the Baseline model and the
filtered image model (Places365) are shown in Figure [9]

The results are generally comparable, although the Base-
line model was evaluated on a slightly larger test set due to
the lack of image filtering.

Filtered Images (Places365) Unfiltered Images (ImageNet)
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Figure 9: Confusion Matrix for Baseline (ImageNet) and
Filtered Images (Places365)

The confusion matrices however do reveal recurring mis-
classifications between certain pairs of classes. Notably,
these errors occur most frequently between classes that are
structurally and materially similar, and differ primarily in
terms of construction era. This observation motivates the
next section, in which we investigate model performance
when such age-based distinctions are removed and similar
structural types are grouped together.

5.3. Test Performance by Grouped Hazus Classes

In this section, we evaluate model performance after
grouping Hazus classes by structural type, ignoring differ-
ences in construction year. This reflects the intuition that
the models may be able to differ between design and ma-
terial type, but cannot differentiate between structures that
only differ by age. Table [3| presents the test performance of
each model under this grouped classification scheme.

Table 3: Test set performance metrics across different
model configurations using class grouping

Metric Baseline | ImageNet | Places365
Accuracy (%) 69.9 71.2 73.4
Macro F1 (%) 66.0 68.2 69.8
Weighted F1 (%) 69.8 71.9 73.3

All three models show improvements across all metrics
after grouping, with the most significant gains observed for
the filtered ImageNet model. The Baseline model shows the
smallest relative improvement, which may indicate a lower
ability to distinguish structural forms. These results sug-
gest that while all models struggle with distinguishing con-
struction eras, the filtered models are better at recognizing
structural form.

Figure[I0] shows the confusion matrices for the grouped
classification task. The filtered Places365 model yields



a matrix with clearer diagonal dominance and fewer off-
diagonal errors, indicating more consistent and accurate
predictions across all structural categories.

Filtered Images (Places365) Unfiltered Images (ImageNet)

Figure 10: Confusion Matrix for Baseline (ImageNet) and
Filtered Images (Places365)

6. Conclusion

This study developed a two-stage deep learning frame-
work to classify bridge structural types defined by the Hazus
Earthquake Loss Estimation methodology using Google
Street View imagery. The proposed system addresses the
lack of labeled infrastructure datasets by filtering raw im-
age collections to retain only side-view bridge images and
then classifying them using a fine-tuned ResNet-50 model.

Among the methods evaluated, the combination of image
filtering and ResNet-50 pretrained on Places365 achieved
the most balanced performance across Hazus classes, as
measured by macro and weighted Fl-scores.  While
the baseline model trained on unfiltered images achieved
slightly higher raw accuracy, its lower F1-scores suggest it
relied more on class priors than structural features.

Confusion matrices revealed that most misclassifications
occurred between classes that are structurally similar and
differ primarily by construction year. Grouping such classes
showed a significant performance boost across all models.
This supports the hypothesis that while the model can re-
liably learn visual cues associated with structural form and
material, it struggles to distinguish age-based variants that
may not be visually distinct.

For future work, expanding the dataset would be the
most significant improvement. The current pipeline was
limited by the number of images retrievable from Google
Street View, both in terms of the total number of bridges
and of usable views per bridge. Increasing the dataset size
would likely improve model generalization and robustness.
It would also be valuable to test this method in other re-
gions, especially outside of California or the United States,
where bridge designs and construction practices may dif-
fer significantly. Such cross-regional testing would help as-
sess the robustness of the model. Finally, a hybrid approach
that combines visual features with easily obtainable meta-
data could further improve classification performance.
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